Orthosiphol A, a Highly Oxygenated Diterpene from the Leaves of Orthosiphon stamineus

Toshiya Masuda,* Kazuyo Masuda and Nobuji Nakatani
Laboratory of Food Chemistry, Faculty of Science of Living, Osaka City University, Sumiyoshi. Osaka 558, Japan

Key Words: orthosiphol A; pimarane diterpene; structure determination; Orthosiphon stamineus

Abstract

The structure of orthosiphol \mathbf{A} (1), a highly oxygenated pimarane diterpene, has been established on the basis of spectroscopic and chemical methods.

Orthosiphon stamineus Benth is a popular medicinal herb known as Kumis-kuching in South-East Asia, and the leaves have been introduced to Europe and Japan as a healthy tea having potent diuretic activity. ${ }^{1}$ Although many chemical studies on its constituents have been carried out since 1886 , no report of chemotaxonomically typical compound has appeared. ${ }^{2}$ Chemotaxonomical interest prompted us to examine the constituents in the leaves. This paper deals with the structure determination of a new highly oxygenated diterpene, orthosiphol $\mathbf{A}(\mathbf{1})$, isolated from this plant as a diterpene compound for the first time.

Orthosiphol A (1), ${ }^{3} \mathrm{C}_{38} \mathrm{H}_{44} \mathrm{O}_{11}$, was isolated by repeated silica gel chromatography from the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of the leaves of Orthosiphon stamineus. The highly oxygenated pimarane structure of 1 was determined based on HH-COSY, CH-COSY and COLOC spectra. ${ }^{4}$ The two acetyl and one of two benzoyl groups were found to be attached to $\mathrm{C} 2, \mathrm{C} 7$ and C 1 , respectively, by COLOC spectrum. The other benzoyl group was determined to be at Cl 1 by the chemical shift of H 11 (5.79 ppm). The stereochemistry of the A and B rings was analyzed by NOEs and coupling constants in ${ }^{1}$ H-NMR of 1 as shown in Fig. 1. A strong NOE was observed between 7 -acetyl protons and a vinyl proton (4.81 ppm) at C16, and disclosed α-orientation of the vinyl group and a boat-like conformation of the C ring. The conformation of the C ring impeded the determination of orientation of 11-benzoyl group by the coupling constant ($J_{\mathrm{H} 9, \mathrm{H} 11}=5.5 \mathrm{~Hz}$). It was presumed that one of the reasons of boat conformation for the \mathbf{C} ring depended on the 2 -alkylketone effect 5 caused by the carbonyl group at 14 -position. To remove the effect, 1 was reduced by excess LiAlH_{4}, and subsequently acetylated with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine to give 2,11-diacetate (2) as a sole product. The ${ }^{1} \mathrm{H}$-NMR of 2 showed a long range coupling between H 14 and $\mathrm{H} 12(\mathrm{~J}=1 \mathrm{~Hz})$, revealing a chair conformation for the C ring. From the diaxial coupling constant between H 9 and H 11 ($J=10 \mathrm{~Hz}$), the 11-benzoyl group was concluded to be α-oriented. (Fig. 2) The absolute stereochemistry of 1 was determined by exiton chirality method. A positive cotton effect caused by 1 and 11-benzoyl groups in the CD spectrum ${ }^{3}$ of 1 revealed C 11 has R configuration. Thus, the structure of orthosiphol A should be expressed as structure 1.

Fig. 1 Selective NOEs and J values of 1

Fig. 2 C ring of 2

Acknowledgement We thank Dr. Takeshi Kitahara (Faculty of Agriculture, The University of Tokyo) for elementary analyses and Dr. Tadao Kondo and Dr. Kumi Yoshida (Chemical Instruments Center, Nagoya University) for CD measurement.

References and Notes

1 Fujimoto, T.; Tsuda, Y. Yakugaku Zasshi, 1972, 92, 1060; references cited therein.
2 Itallie, V. Nieuw tijdshrift voor de Pharmacie in Nederland, 1886, 232.
3 1; colorless plates; mp $210^{\circ} \mathrm{C}$; [α] $\mathrm{D}^{26-127^{\circ}}$ (c $1.0, \mathrm{CHCl}_{3}$); SIMS m/z $677[\mathrm{M}+\mathrm{H}]+$; Anal. Found: C, 67.99; $\mathrm{H}, 6.65$, Calcd. for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{O}_{11}: \mathrm{C}, 67.44 ; \mathrm{H}, 6.55 \%$; IR (film) $v \max : 3425,2967,1723$, $1283,1240,756,710 \mathrm{~cm}^{-1}$; UV (MeOH) $\lambda_{\max }(\varepsilon): 230(22000) \mathrm{nm} ; \mathrm{CD}(\mathrm{MeOH}) \lambda \max (\theta): 234$ (+35000) nm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 74.2(\mathrm{Cl}), 67.7(\mathrm{C} 2), 77.4(\mathrm{C} 3), 38.3(\mathrm{C} 4), 35.5(\mathrm{C} 5), 21.4$ (C6), 70.6 (C7), 75.8 (C8), 42.1 (C9), 43.7 (C10), 68.6(C11), 39.7 (C12), 47.8 (C13), 208.6 (C14), 142.0 (C15), 113.1 (C16), 26.6 (C17), 22.3 (C18), 28.9 (C19), 16.8 (C20), 20.9 (2-Ac), 170.1 (2Ac), 21.0 (7-Ac), 168.9 ($7-\mathrm{Ac}$), 164.0 ($1-\mathrm{Bz}$), 166.2 ($11-\mathrm{Bz}$), 132.9 ($1-$ or 11-Bz), 132.2 ($1-$ or 11$\mathrm{Bz}), 130.8$ (1- or $11-\mathrm{Bz}$), 130.2 (1- or 11-Bz), 129.7 (1- or $11-\mathrm{Bz}$), 128.6 ($1-$ or $11-\mathrm{Bz}$), 128.2 ($1-$ or $11-\mathrm{Bz}), 127.8(1-$ or $11-\mathrm{Bz}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 5.30(1 \mathrm{H}, \mathrm{brd}, J=2.7 \mathrm{~Hz}, \mathrm{H} 1), 5.45(1 \mathrm{H}$, brt, $J=3.3 \mathrm{~Hz}, \mathrm{H} 2$), $3.49(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 2.45(1 \mathrm{H}, \mathrm{dd}, J=11.0$ and $4.9 \mathrm{~Hz}, \mathrm{H} 5), 1.99-2.12(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 6)$, $5.43(1 \mathrm{H}$, brt, $J=3.0 \mathrm{~Hz}, \mathrm{H} 7), 3.11(1 \mathrm{H}, \mathrm{brd}, J=5.5 \mathrm{~Hz}, \mathrm{H} 9), 5.79(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 11), 1.96(1 \mathrm{H}, \mathrm{dd}, J=16.0$ and $1.7 \mathrm{~Hz}, \mathrm{H} 12), 2.57(1 \mathrm{H}, \mathrm{dd}, J=16.0$ and $4.9 \mathrm{~Hz}, \mathrm{H} 12), 5.66(1 \mathrm{H}, \mathrm{dd}, J=17.7$ and $10.4 \mathrm{~Hz}, \mathrm{H} 15)$, 4.75 ($1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}, \mathrm{H} 16$), $4.81(1 \mathrm{H}, \mathrm{d}, J=17.7 \mathrm{~Hz}, \mathrm{H} 16), 1.14(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 17), 1.04(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 18)$, 1.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H} 19$), 1.49 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H} 20$), $1.94(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Ac}$), 2.17 ($3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Ac}$), $7.60(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}$, 1 - or $11-\mathrm{Bz}), 7.58(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, 1$ - or $11-\mathrm{Bz}), 7.54(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 1$ - or $11-\mathrm{Bz}), 7.41(1 \mathrm{H}, \mathrm{t}$, $J=7.3 \mathrm{~Hz}, 1$ - or $11-\mathrm{Bz}), 7.29(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 1$ - or $11-\mathrm{Bz}), 7.11(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, 1-$ or $11-\mathrm{Bz}), 2.23$ $(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, 3-\mathrm{OH}), 2.80(1 \mathrm{H}, \mathrm{brs}, 8-\mathrm{OH})$.
4 COLOC correlations (C / H): $\mathrm{C} 1 / \mathrm{H} 3$ and $\mathrm{H} 20, \mathrm{C} 2 / \mathrm{H} 1, \mathrm{C} 3 / \mathrm{H} 1, \mathrm{H} 19$ and $\mathrm{H} 18, \mathrm{C} 4 / \mathrm{H} 5, \mathrm{H} 19$ and H 18 , $\mathrm{C} 5 / \mathrm{H} 7, \mathrm{H} 12$ and $\mathrm{H} 20, \mathrm{C} 7 / \mathrm{H} 6, \mathrm{C} / \mathrm{H} 9, \mathrm{C} 9 / \mathrm{H} 7, \mathrm{H} 12$ and $\mathrm{H} 20, \mathrm{C} 10 / \mathrm{H} 1, \mathrm{H} 5, \mathrm{H} 6$ and $\mathrm{H} 9, \mathrm{C} 11 / \mathrm{H} 9$ and $\mathrm{H} 12, \mathrm{Cl} 2 / \mathrm{H} 17, \mathrm{C} 13 / \mathrm{H} 11, \mathrm{H} 5, \mathrm{H} 16$ and $\mathrm{H} 17, \mathrm{C} 14 / \mathrm{H} 12$ and $\mathrm{H} 17, \mathrm{C} 15 / \mathrm{H} 12, \mathrm{H} 16$ and $\mathrm{H} 17,2-\mathrm{Ac} / \mathrm{H} 2$, 7-Ac/H7, 11-Bz/H11.
5 Allinger,N. L.; Blatter, H. M. J. Am. Chem. Soc., 1961, 83, 994.

